AMERICAN PHILOSOPHICAL SOCIETY

HELD AT PHILADELPHIA
FOR PROMOTING USEFUL KNOWLEDGE

Vol. XLIII.
April-September, 1904.
No. 177.

THE ORIGIN AND NATURE OF COLOR IN PLANTS.

BY HENRY KRAEMER.
(Read April 8, 1904.)
A list of the more important papers published, up until within the past ten years, on the subject of plant colors is given in Dippel's Das Mikroskop. ${ }^{1}$ Of these the papers by Pringsheim ${ }^{2}$ on the examination of chlorophyl and related substances, and by Müller ${ }^{3}$ on the spectrum-analysis of the color substances of flowers, are probably the most important.

Pringsheim confined his attention mainly to a spectroscopic study of chlorophyl and the yellow substances in germinating plants, yellow flowers and yellow autumn leaves. He concluded that the yellow substances from these several sources were but modifications of chlorophyl. The yellow principle found in germinating plants he regarded as closely related to chlorophyl, and the yellow substance in autumn leaves as a more remote modification of it. He did not consider, however, as subsequent writers have claimed, that these substances were identical.

Two years before the appearance of Pringsheim's paper, Kraus ${ }^{4}$ stated that he had separated from an alcoholic solution of chlorophyl by means of benzol two distinct substances, one yellow and the other blue, the latter being taken up by the benzol. Pringsheim, however, showed that the blue substance was in reality chlorophyl, and that the alcoholic solution, which showed faint chlorophyl-like bands in the spectroscope, still contained some chlorophyl.

While Pringsheim believed that there were two modifications of chlorophyl, one yellow and the other green, the former predominating in germinating plants grown in the dark, and the latter or green substance in leaves exposed to the light, still he did not believe that they could be separated from each other by the method proposed by Kraus.

Yet notwithstanding Pringsheim's well-founded criticisms of the method employed by Kraus, and taking for granted that there were two principles composing chlorophyl, nearly all investigators since Kraus's work was published have practically employed his method as modified by Hansen ${ }^{5}$ for the separation of the so-called yellow and green chlorophyl. According to this method of Hansen, fresh material is extracted with 95 per cent. alcohol, the liquid filtered, and to the filtrate 30 to 50 per cent. of water is added; the solution is shaken with petroleum ether and the.liquids separated, the ether taking up the green substance, or chlorophyl proper, and the hydro-alcoholic solution holding the yellow principle.

If autumn leaves are treated in the same way, the ether solution will contain very little chlorophyl, while the hydro-alcoholic solution will contain a yellowish or reddish substance, depending upon the kind of material examined. It has usually been considered that this yellow substance in autumn leaves is associated in summer with the active plastids, and on account of its having little food value remains behind. It has furthermore been considered by many that the yellow principle in young leaves is identical with that in autumn leaves and the yellow substance found in yellow flowers, fruits and roots.

Kinds of Colors in Plants.

Colors in plants may be considered to be due to definite constituerts which either themselves are colored or produce colors when acted upon by other substances. These substances are found in all parts of the plant, and apparently in all of the cells excepting certain meristematic or dividing cells. They may be divided into two well-differentiated classes, namely, (1) those which are associated with the plastids, or organized bodies in the cell, and (2) those which occur in the cell-sap, or liquid of the cell.

So called White Colors.

The so-called white colors in plants do not properly belong to either class, but may be said to be appearances rather, due to the absence of color, and depending upon the reflection of light from transparent cells separated by relatively large intercellular spaces containing air. In other words the effect produced by these cells may be likened to that produced by the globules in an emulsion. The white appearance is most pronounced in the pith cells of roots and stems, where on the death of the cells the size of the intercellular spaces is increased and the colorless bodies in the cells as well as the walls reflect the light like snow crystals.

Methods of Extraction.

During this investigation I have examined by means of the Leitz micro-spectroscope the various kinds of coloring substances to which I shall refer but, except in the case of chlorophyl, did not obtain results which were entirely satisfactory, and will endeavor to give special attention to this phase of the subject in another paper. It is frequently difficult to extract and isolate these substances in a sufficiently pure condition for spectroscopic work, particularly as many of them change rapidly.

In this paper, therefore, I shall confine myself to the consideration of the behavior of the extracted coloring substances toward chemical reagents.

The material containing the coloring matter was in all cases separated as nearly as possible from that which was free from color or contained it in less amount. Various solvents were used in the extraction of the coloring substances, depending upon the solubility or nature of the substance. The solvent mostly employed was alcohol (95 per cent.), in some cases dilute alcohol (50 per cent.) or water (hot or cold) was employed.

The plastid colors were extracted by placing the fresh material in 95 per cent. alcohol and allowing it to macerate in the dark for a day or two. I usually took the precaution to tear the material with the fingers rather than to cut i. The solution so obtained contains other than the plastid coloring substances, which latter may be isolated in a more or less pure condition by either of the following methods: (1) The alcohol is distilled off and the solution evaporated on a water bath to near dryness, boiling water is then added and
the solution filtered, the extract washed with hot water until the filtrate is colorless ; the extract is then taken up with cold alcohol. (2) In the other method the alcoholic solution is diluted with water; and ether, benzin, benzol, xylol, or other similar solvent is added, and the mixture shaken in a separatory funnel. The ethereal layer containing the plastid color may be further purified by shaking it in a separatory funnel with alcohol, adding sufficient water to cause separation of the two layers. The ethereal solution is then distilled and evaporated on a water bath to near dryness, and the pigment taken up with cold alcohol. In either case the alcoholic solution may be boiled for an hour or two with zinc in a reflux condenser, whereby the more or less oxidized plastid pigments are restored. This is a particularly important procedure in the microspectroscopic examination of chlorophyl, and may be used as a means of detecting chlorophyl in other substances.

In order to obtain the coloring principles in early leaves, as the red coloring principle in the leaves of oak, rose, etc., it was found most satisfactory to extract the material with alcohol, add xylol or similar solvent, and then sufficient water to effect separation of the solutions, using a separatory funnel. The cell-sap color remains in the hydro-alcoholic solution, and the traces of xylol should be removed by heating the solution on a water-bath, as the presence of xylol causes a cloudiness in the solution on the addition of the reagents to be subsequently employed.

The cell-sap colors of flowers, as of pansy, tulip, etc., are separated from the plastid pigments in the same way as just mentioned in connection with early leaves.

The cell-sap colors in fall leaves are easily removed by treating the more or less comminuted material with hot or cold water.

In some cases there are several associated colors, and these may be extracted separately by taking advantage of their varying solubility, as in the case of carthamus, where the red principle is extracted with water and the yellow principle with alcohol.

In still other cases special methods are employed, as in the extraction of carotin from carrot according to the method proposed by Husemann." The grated carrot is mixed with water, squeezed through cheesc-cloth, and a small quantity of dilute sulphuric acid and tannin added to the mixture, forming a coagulum which settles to the bottom of the precipitating jar. The supernatant liquid is removed by means of a syphon and the coagulum treated six or
seven times with 80 per cent. alcohol, which removes mannit and hydro-carotin; the coagulum is then extracted with hot carbon disulphide, which removes the carotin. This solution is evaporated to about half the original volume, an equal amount of absolute alcohol added, and set aside to crystallize, the carotin separating.

One of the striking observations made during this investigation was that in the case of the cell-sap colors the solution was different in color, as compared to the natural color, or sometimes almost colorless, reagents, however, striking colors as intense or even more intense than the original colors.

For the convenience of those who may wish to follow similar studies, the plants which I examined may be grouped according to the solvents which I found best adapted for the extraction of the coloring substances. There is also given the part of the plant employed and the color of the solutions I obtained.

Coior Principles Extracted with Alcohol.

Name of Plant.	Part Used.	Color of Solution.
1. Apple (Baldwin) (Pyrus Malus)	Epicarp	Light yellowish-red
2. Apple (Belleflcur) (Pyrus Malus)	Epicarp	Pale yellow
3. Arbutus (Epigat repens)	Petals	Pale straw
4. Azalea (Azalea nudiflora)	Petals Leaves	Pale straw Deep green
6. Blackberry (Rubus Canadensis)	Stems	Reddish-brown
7. Buttercup (Ranunculus acris)	Pe	Deep yellow
8. Cabbage, red (Brassica aleracea)	Leaves	Purplish-red
9. Capsieum (Capsicum fastigiatum)	Pried fruit	Yellowish-red
10. Carnation, red (Dianthus Caryophyllus)	Petals	Deep red
11. Carrot (Daucus Carota).	Root	Deep reddish-yellow
12. Celery (Apium graveolens).	Etiolated leaves	Bright greenish-yellow
13. Chondrus (Chondrus crispus).	Fronds	Light yellowish. green
14. Cinquefoil (Potentilla Canadensis)	Petals	Greenish-yellow
15. Cranberry (Oxycoccus macrocarpus) .	Frult	Deep red
16. Daffordil (Narcissus Pseudo-Narcissus)	Petals	Deep yellow
17. Dandelion (Taraxacum officinale) .	Petals	Lemon-yellow
18. Dock (Rumex crispus).	spring leaves	Reddish-brown
19. Dogwood (Cornus Florida)	Fruit	Brownlsh-yellow
20. Dulce (Rhodymenia palmata)	Fronds	Light yellowishgreen
21. Elder (Sambucus Canadensis)	Spring leaves	Reddish-brown
22. Fucus (Fucus vesiculosus)	Fronds	Greenish-brown
23. Hepatica (Hepatica triloba)	Petals	Lemon-yellow or greenish-yellow
23a. Hepatica (Hepatica triloba)	Involucre	Purplish-red
24. Iris (Iris versicolor)	Petals	Violet
25. Jack-in-the-pulpit (Ariscma triphyllum)	Spathe	Purplish-red
26. Japanese quince (Cydonia Japonica) .	Petals	Bright purplish-red
26a. Lemon peel . -	Epicarp	Yellow
27. Mallow (Malva sylvestris)	Petals	Violet
28. Maple (Acer rubrum) .	Flowers	Yellowish or brown-ish-red
29. Marigold (Calendula afficinalis)	Petals	Deep yellow
30. Oak, red (Quercus coccinea?).	Spring leaves	Reddish-brown
30a. Orange peel ${ }^{\text {a }}$,	Epicarp	Orange-yellow
31. Pansy, blue (Viola tricolor)	Petals	Purplish-red

Color Principles Extracted with Alcohol-Continued.

Name of Plant.	Part Used.	Color of Solution.
32. Pansy, yellow (Viola trical	Peta	Deep yellow
33. Pineapple (Ananas sativa) ${ }^{\text {a }}$	Ouker portion	Brown
34. Radish (Raphanus Raphanistrum)	Parplish layer of root	Light red
35. Rose (Rosa gallica) 35a. Rose (Rosa	$\begin{aligned} & \text { Dried petals } \\ & \text { Early leaves } \end{aligned}$	Light brown Reddish-brown
36. Saftower (Carthamus tincto	Petals	Deep yellow
37. Saffron (Crocus sativus)	Dried stigmas	'ellowish-red
38. Skunk rabbage (Spathyema fotida)	Green leaves	Deep green
39. Skunk cabbage (Spathyema fatida)	Inner portion of leaf	Deep yellow
40. Skunk cabbage (Spathyema fetida)	Spathe [buds	Deep yellowish-red
41. Skunk eabbage (Spathyema fatida)		Purplish-red
42. Skunk cabbage (Spathyema fotida)	Tips of leaf buds	Yellowish-red
43. Spinach (Spinacea aleracea).	Leaves	Deep green
44. Sweet Cieely (Washingtonia Claytoni)	Spring leaves	Reddish-brown
45. Tomato (Lycopersicon esculentum).	Fruit	Pale yellow
46. Tulip (Tulipa Gesneriana).	Petals	Light reddish-brown
47. Turnip (Brassica napus).	Purplish layer of root	pale yellow
43. Violet, blue (Viola cuculata).	Petals	Pale purplish-red
49. Violet, jellow (Viola scabriuscula)	Petals	Yellow
50. Wahoo (Euonymus Americanus)	Winter leaves	Reddisl-brown

Color Principles Extracted with Dilute Alcohol.

51. Black Mexiean com (Zea	Grains	Light purplish-red
52. Geranium, house (Pelargonium -)	Petals	Light purpilsh-red
53. Geranluin, wild (Geranium maculatum)	Petals	Pale straw
51. IIoustonia (Houstonia corulea)	Petals	Pale straw
55. Hyacinth, dark red (Muscari botryoides)	Petals	Light yellowish-red
56. Hyaeinth, blue (Muscari batryoides)	Petals	Purplish-red
57. Lilae (Syringa vuloaris).	Petals	Brownish-yellow
58. Rhubarb (Rheum -).	Outer portion of petioles	Prale red
59. Strawberry (Fragaria --)	Frult	Yellowish-red
60. Violet, blue (Viola cuculata)	Petals	Greenish-yellow
61. Wistarla (Kraunhia frutescens)	l'etals	lanle brown

Color Principles Extracted with Water.

62. Beeelt (Fagus Amer	Autumn leaves	lealdish-yellow
63. 13eet (Bela vulgaris)	Rout	leep red
G1. Blackluerry (Rubü Cana	Outer portion of stems	Browhish-re
63. Blacklserry (Rubus Canadensis).	Frult	Purplish-red
66. Cranberry (Orycoccus macrocarpus)	Frult	leepred
67. Dogwoorl (Cornus t'lorida)	Autumn leaves	Redhllsh-brown
67 a . Dille (Rhodymenia palmata)	Fro	Purplish
08. Fidder (Sambucue Canadersis)	Dried frust	Purplish-red
09. Graje (Vitis vinilera)	Vr	Purplish-red
70. Ilolly (flex Ayuiolium)	Frult	jeep browndsh-red
71. Hyalrangea (J/ydranoea Hortenmis).	Neutral flowers	Brownlsh-red
72. Indlan chlumber (Medeola V'irginiana).	Autumar lenves	beep browulsh-red
73. Mnilow (Malva sylveatria)	Pet	Dark purplish-red
74. Maplo (Acor asccharum)	Alumin leaves	13rownist-red
75. Marlgold (Calendula officinalia)	Drled petals	1)eep hruwnish-red
76. (nk, white (Quercue alla)	Alituma ledt	Brownish-red
77. Hhuluarl) (lheum	Outer portlon of petoles	Pale rad
78. It	Pericarp	Deep brownish-red
79. Snflower (Carthamus tinctori	Irred juetals	beep hrownish-red
80. Malliron (Crocua sntivua)	Iried stigrass	Deep yellowish-sed
81. Aolomon'w meal (Vagners racemosa)	Frult	leepred

Plastid Color Substances.

The green color in plants is due, as is well known by botanists, to a green pigment known as chlorophyl which is associated with a plastid or organized protoplasmic body, forming a so-called chloroplast. Chlorophyl is distinguished from all other plant substances by possessing a dark broad band between the Fraunhofer lines A and C at the red end of the spectrum, which is apparent even in very dilute solutions. It also shows in more concentrated solutions a broad band extending from F to the violet end of the spectrum, a narrow band between C and D , or the orange portion of the spectrum, and two narrow bands between D and E , or the yellow portion of the spectrum.

Pringsheim examined spectroscopically solutions of the yellow substances found in etiolated germinating leaves, and also the yellow substances of yellow flowers and autumn leaves, and observed the characteristic chlorophyl bands only by using tubes more than three hundred millimeters thick. Inasmuch as small tubes holding five or ten cubic centimeters are sufficient for the examination of chlorophyl, by means of the Zeiss or Leitz microspectroscope, and also because a dilute solution is necessary, one is surprised that Pringsheim and others have used tubes of such enormous thickness, and that they concluded from the more or less indistinct bands which they observed that these substances were modifications of chlorophyl. It is not at all unlikely that what he actually had were concentrated solutions of as many different principles, each of which contained traces of chlorophyl, notwithstanding the care he exercised in separating the green and yellow portions in the material which he used.

In my own studies on the yellow principle of developing leaves I used the buds of skunk cabbage, which develop under ground and under leaves and are of considerable size before exposed to light. The outer light greenish-yellow portions were removed, and only the intense yellow central portion used. This material was extracted in the dark with alcohol. The solution thus obtained is of a pure lemon-yellow color, and may be freed from cell-sap substances either by evaporation to an extract, washing with water, dissolving in cold alcohol, and then boiling with zinc ; or by treating the original alcoholic solution with petroleum benzin, whereby the pure yellow leaf substance is separated from the cell-sap substance.

This yellow principle is combined with plastids, which are about one micron in diameter, being spherical or polygonal in shape, and lying closely packed in the palisade cells of both the upper and lower surfaces of the leaf. The yellow plastids are distinguished from the leucoplastids, which occur in the epidermal and mesophyl cells, as well as the chloroplastids, which are found later in the green leaves, by being smaller, relatively more numerous and by not manufacturing either reserve or assimilation starch. The associated pigment is further distinguished from chlorophyl by not being fluorescent; in having a broad band extending from 65 to the red end of the spectrum, and another extending from $50-52$ to the violet end of the spectrum, when examined by means of the Leitz micro-spectroscope ; and in being less soluble in alcohol and more so in benzin than chlorophyl. This latter characteristic affords a means of partially separating it from chlorophyl, and for this principle I propose the name etiophyl, and for the associated plastid, which seems to be a distii.ct body, I propose a corresponding name, etioplast, these terms being used expressly for the purpose of avoiding confusion. The etioplasts completely pack the cells in which they are found, and may be regarded as meristematic plastids, which later give rise to the chloroplastids.

The yellow color in certain roots, flowers and fruits is apparently in all cases due to a yellow pigment associated with a plastid known as a chromoplast. These plastids are distinguished from the other plastids by being of variable shape and in usually containing protein grains. The associated pigment resembles in some respects etiophyl and chlorophyl, in that it is more or less soluble in ether, benzol, xylol, carbon disulphide, ctc. These pigments, for the most part, appear to be unaffected by either mineral or organic acids, but usually give some shade of green with alkalies, potassium cyanide, sodium phosphate or iron salts. In some cases they are affected by alum, iodine, sodium nitrite, or sodium nitrite and sulphuric acid, as given in Table I. ${ }^{1}$

[^0]Inasmuch as there seems to be a class of these principles which are distinguished by their solubility, as well as reactions with various chemicals, I venture to propose the name chromophyl for these yellowish or orange-colored pigments.
All of the coloring substances given in Table I are soluble in xylol, ether and similar solvents, as well as alcohol, but are sparingly soluble in water.
There are several substances which behave much like the plastid substances, but which are insoluble in xylol, ether, etc., and appear to occupy an intermediate position between the true plastid color substances and the cell-sap colors. I have therefore placed them in class by themselves in Table II.

Cell-sar Color Substances.

During the course of metabolism the plant cell manufactures other color substances which are not combined with the protoplasm, but which are contained in the cell-sap, or liquid of the cell. These substances, unlike the plastid colors, are insoluble in xylol, ether and similar solvents, but are soluble in water and alcohol, which affords a means of separating them from the plastid colors. These cell-sap pigments may occur in cells free from plastids or in the vacuoles of cells containing plastids, but not associated with them as a part of the organized body or plastid. They are usually extracted along with the chlorophyl and remain in the hydroalcoholic solution after separation of the plastid pigment by means of xylol or other solvent. These pigments have one property in common with the chromophyl substances, namely, with alkalies, potassium cyanide and sodium phosphate, they assume some shade of green. They are distinguished, however, by the fact that the colors are markedly affected by acids and alkalies and by iron salts. They are in most cases also affected by other reagents, as shown in the accompanying tables. These substances being so sensitive to reagents, probably accounts for the various shades and tints characteristic not only of flowers but of leaves as well. My observations on the germinating kernels of black Mexican corn show that even in contiguous cells the constituents associated with the dye

[^1]vary to such an extent that the pigment in one cell is colored reddish, in another bluish-green, and in another purplish.

The results of the examination of the cell-sap colors are given in Tables III, IV and V, and while it might seem a very easy matter to divide plant colors into reds, blues and purples, it will be seen that this is almost impracticable, and that the colors given in these tables merge into one another.

An examination of the color substances found in early spring leaves and in autumn leaves showed that these substances are in the nature of cell-sap colors, behaving toward reagents much like the cell-sap colors of flowers, and indeed in some instances they are apparently identical, as will be seen by comparing the results given in Table VI with those given in Tables III, IV and V.

Conclusions.

1. The white appearance in flowers and other parts of plants is due to the reflection and refraction of light in more or less colorless cells separated usually by large intercellular spaces containing air.
2. The green color of plants is due to a distinct pigment, chlorophyl, contained in a chloroplastid, and appears to be more or less constant in composition in all plants. The chloroplastid is furthermore characterized by usually containing starch.
3. The yellow color substance in roots, flowers and fruits is due to a pigment, to which I have given the name chromophyl. This substance is contained in a chromoplastid which varies considerably in shape, and usually contains proteid substances in addition.
4. In the inner protected leaf-buds there is a yellow principle which I have termed etiophyl, and which is contained in an organized body which I have termed an etioplast. The etioplast does not appear to contain either starch or proteid substances.
5. The Blue, purple and' red color substances in flowers are dissolved in the cell-sap, and are distinguished for the most part from the plastid colors by being insoluble in ether, xylol, benzol, chloroform, carbon disulphide and similar solvents, but soluble in water or alcohol. While quite sensitive to reagents yet none of these colors behave precisely alike.
6. Cell-sap color substances corresponding to the cell-sap colors of fowers are also found in early or spring leaves and in autumn leaves.

In addition I desire to say that I am inclined to look upon the chromoplastids of both flowers and fruits as having the special function of manufacturing or storing nitrogenous food materials, for the use of the developing embryo or developing seed, particularly as protein grains are usually contained in them. The same may be said of the chromoplasts in roots, as in carrot, where the proteids of the chromoplasts are utilized by the plant of the second year.

I am further inclined to consider the cell-sap colors, like other unorganized cell-contents, as alkaloids, volatile oils, etc., to be incident to physiological activity, and of secondary importance in the attraction of insects for the fertilization of the flower and dispersal of the seed.

Finally, I acknowledge my indebtedness to Miss Florence Yaple, Philadelphia, for valuable assistance in the preparation of this paper.

Bibliography.

1. Dippel: Das Mikroskop, 2te Auflage, zweiter Theil, erste Abtheilung, pages 65 and 66 .
2. Pringsheim: "Untersuchungen über das Chlorophyll," Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1874, p. 628.
3. Mueller: "Spectralanalyse der Blüthenfarben," Pringsheim's Jahrbuch, Bd. XX (1889).
4. Kraus: "Ueber die Bestandtheile der Chlorophyllfarbstoffe und ihrer Verwandten," Sitzungsber. d. med. phys. Gesellsch. in Halle (1871).
5. HANsEN: "Farbstoffe des Chlorophylls," 1888, quoted by Dippel.
6. Husemann, A.: Die Pfanzenstoffe, 2te Auflage, p. 959.
Examination of Plastid Color Substances．

	STEPRリブL		CHLOROPRYL		Chromophyl，					
	59．Slame cakuge	12．Celery	43．Spinach	35．Skunk cabbage	16．Dafforid	7．Buttercup	14．Cinquefoil	32．Fellow pansy	49．Yellow riolet	29．Marigold
Mlacral meids ．	Clondy	Cloudy	Cloudy	Pale brown， cloudy	Cloudy，color less inteuse	Cloudy	$\begin{aligned} & \text { Paler and } \\ & \text { sllghtly } \end{aligned}$	Decolorized， cloudy	Slightly clondy	No effect
Organic scids ．	Coudy	No effect	Cloudy	Light brown－ ish－green	Cloudy，color lessintense	Slightly cloudy	Paler and slightly clondy	$\begin{aligned} & \text { Decolorized, } \\ & \text { cloudy } \end{aligned}$	Slightly clondy	No effect
Alsalies	O．ctinten－ sified	Yellowish－ हreen	No effect	No effect	Slightly green	No effect	lellowish－ green	$\begin{aligned} & \text { Yellowish } \\ & \text { green } \end{aligned}$	$\begin{aligned} & \text { Yel'sh-green, } \\ & \text { becoming } \\ & \text { colorless } \end{aligned}$	Light yellow－ isli－green
Potasium cya－ nide．	O．c．intea－ sified	Yellowish． green	No eftect	No effect	Slightlygreen	No effect	$\begin{aligned} & \text { Yellowish - } \\ & \text { green } \end{aligned}$	$\begin{aligned} & \text { Yellowish - } \\ & \text { green } \end{aligned}$	$\begin{aligned} & \text { Yellowish - } \\ & \text { green } \end{aligned}$	Iight yellow－ ish－green
Sodium phos－ rhate	O．C．inten－ sified	Yellowish green	No effect	No effect	Slightlygreen	No effect	$\begin{aligned} & \text { Yellowish- } \\ & \text { green } \end{aligned}$	lellowish－ green	Yellowish－ green	Light yellow－ ish－green
Ferric chloride．	Light olive green	Brown	No effect	Brownish－ green	Light olive－ gr＇n，slight－ Iy eloudy	Yellowish－ brown， cloudy	$\begin{aligned} & \text { Brownish- } \\ & \text { green } \end{aligned}$	Olive－green	Yellowish－ green	Greenish brown
Ferrous sul－ phate．．．	Light olive－ green． cloudy	Pale brown	Light brown	Brownish． greell	Light olive－ gr＇n，slight－ ly cloudy	$\begin{aligned} & \text { Yellowish- } \\ & \text { green } \\ & \text { clougy } \end{aligned}$	Pale green	Grecen，be－ comillg olive－green	$\begin{aligned} & \text { Yellowish } \\ & \text { green } \\ & \text { cloudy } \end{aligned}$	$\begin{aligned} & \text { Pale grcen- } \\ & \text { ish-brown } \end{aligned}$
Salicslic acid．	Remains clear	No effect	So effeet	No effect	No eflect	No effect	Slightly de－ colorized	Decolorized	Partly decol－ orized	No eflect
Gallie seid．	Remsins clear	No effect	Slightly de－ colorized	Decolorized	Partly decol－ orized	No effeet				
IIydrogen per oxide	No effect	No effect	No effeet	No effect	No effect	No effect	Slightly de－ colorized	Decolorized	Partly decol－ orized	No effect
Sodium nitrite	Y	No effect	No effect	No effect	No cffect	No eflec	No effect	0 effect	Faint brown	No effeet
Sodinm nitrite and sulphuric scid	Cloudy	Cloudy	$\begin{aligned} & \text { Light bluish- } \\ & \text { green } \end{aligned}$	Pale brown， cloudy	Decolorized	Dccolorized	Decolorized	Faint brown	Decolorized	No cffect
Alum ．．．．	Cloudy	Slightly cloudy	Cloudy	Pale brown－ ish－green， cloudy	Cloud	Cloudy	No effeet	$\begin{gathered} \text { Pale green, } \\ \text { cloudy } \end{gathered}$	Pale grcen， cloudy	No effect
Ammonio－ferrie alum	Olive－green	Brown	Greenish brown	Brownish－ green， cloudy	Olive－green	$\begin{aligned} & \text { Yellowish } \\ & \text { brown } \end{aligned}$	$\begin{aligned} & \text { Gr'n-brown, } \\ & \text { changing } \\ & \text { to brown } \end{aligned}$	Brownish－ green	Pale yellow－ ish－brown	Greenish－ brown
Ioline solution．	No effect	No effect	No effect	Greenish－ brown	Slightly	Piregreen， distinet	No effect	Brownish	No eflect	No effect
Tannin．．．．	No effect	No effect	No effect	No effect	$\left\lvert\, \begin{gathered} \text { Slightly } \\ \text { cloudy } \end{gathered}\right.$	No effect	No effect	Slightly decolorized	No effect	No effeet

[^2]1904.]

KRAEMER-NATURE OF COLOR IN PLANTS.
Examination of Plastid Colok Substances-Continued.

	CHROMOPHYL								
	75. Marigold	17. Dandelion	46. Tulip	26a. Lemon pcel	30a. Orange peel	45. Tomato	11. Carrol	25. Jack-in-the-pulpit	78. Wild rose hips
Mincral acids . . .	No ellect	Cloudy	Slightly eloudy	No effeet	No effeet	Cloudy	Cloudy	No effect	Slightly eloudy
Organic acids .	No effect	Slightly cloudy	Slightly cloudy	No effect	No effect	Cloudy	Slightly eloudy	No effect	Slightly cloudy
Alkalies. .	O. c. slightly intensified	No effect	Faint yellow-ish-green	Pure yellow	$\begin{aligned} & \text { Greenish-y el - } \\ & \text { low } \end{aligned}$	Very faint green	Slightly greenish	No effect	No effeet
Potassium cyanide	O. e. slightly intensified	No efleet	Faint yellow-ish-green	Pure yellow	$\begin{aligned} & \text { Greenish-y el- } \\ & \text { low } \end{aligned}$	Very faint green	Slightly greentsh	No effeet	No effeet
Sodium phosphate	O. e. sllghtly Intensified	No eillect	Falut yellow-ish-green	Pure yellow	Light greenishyellow	Very faint green	Slightly greenish	No effect	No efl'eet
Ferric chloride . .	Olive-green, changing to brown	Greenish yellow	$\begin{gathered} \text { Greenish } \\ \text { yellow } \end{gathered}$	Dark brown	Yellowish brown	Yellowishgreen	Very light brown	No eflect	Light green-ish-brown
Ferrous sulphate .	Pale olivegreen	Cloudy, pale yellowishgreen	Faint green	Dark brown	$\begin{aligned} & \text { Greenish-y e l- } \\ & \text { low } \end{aligned}$	Pale green	No effect	No effect	Light green-ish-brown
Salieylic acid. .	No efleet	No elleet	No eilect	No eflect	No efleet	No effect	No effiect	No effect	No effect
Gallic aeid .	No eflect	No efleet	No efleet	No elfect	No effect	No effect	No efleet	No effect	No effect
Hydrogen peroxlde	Pale yellow	No elliect	No effeet	No effeet	No effeet	No effeet	No eflieet	No effeet	No effeet
Sodium nitrite. .	Pale yellow	Slightly cloudy	No effect	No effect	No effect	Decolorized	No effect	No effeet	No effeet
Sodium nitrite aud sulphurie acid.	No eflect	Decolorized	Decolorized	Light brown	No effrect	Decolorized	Decolorized, bluish fuorescence	Decolorized	Decolorized
Alum	No effect	$\begin{aligned} & \text { Slightly } \\ & \text { clondy } \end{aligned}$	No effect	Pale green	No effect	Deeolorized	Slightly cloudy	No effeet	No eflect
Ammonio-ferrie alum	Dark yellow-ish-brown	Greenish. yellow, cloudy	Brownishyellow	Deepgreen. ish-browh	Light yellow-ish-brown	Yellowishbrowu	No effeet	No effeet	Light green-ish-brown
Iodine solution . .	No eflect No effect	No effeet	No effect No effect	No eflect No effect	No effeet No effect	Faint green No effiect	Pure green, or yellow with green fluoreseence	No efleet No effect	No effiect No effiect
Tannin	No effect	No effeet	No effect	No effect	No effect				

II. Examination of Intermediate Color Substances.

	37, 50. Saffron	36. Safflower	79. Safflower	2. A pple (Bellefleur)*	70. Holly
Mineral acids	No effeet	Cloudy	No effect	No effect	Light yellow
Oreanic actis	No effect	Cloudy	No effeet	No effect	Slightly decolorized
Altalies	No effect	Greenlsh-yellow	Darkened slightly	Greenish-yellow	Brown
Potassinm cyanile	No effect	Greenish-sellow	Darkened slightly	Greenish-yellow	No effect
Scalium phosphate.	No effect	Greenish.yellow	Darkened sllghtly	Pale yellow	No effect
Ferric chloride	Darkened or greenishbrown	Light olive-green to light brown	Dark greenish-brown	Green, changing to olive-green	Light greenish-brown
Ferrous sulphate.	No effect	Light olive-green to	Light greenish-brown	Pale green	Light greenish-brown
Salicylle acid	No effect	No eifect	No effeet	No effeet	No eflicet
Gallic aeld.	No effect				
Ȟydrogen peroxlde	No effect				
Sodium nitrite.	No effect	No effeet	No effect	Pale brown	No effeet
Solium nitrite followed by sulpharic acid	pale yellow	Cloudy	No effect	Light brown	No effeet
Alum.	No effect	No effect	No effeet	No effect	No effect
Ammonio ferric alum .	Darkened or yellowish-	Light yellowlsh-Lrown	Deep olive-brown	Greenish to greenish	Greenish-brown
Iorine solution	No effeet	No effeet	No effeet	No effect	No effect
Tannin	No effeet	No effect	No effect	No effect	No effeet

III.

	23. Hepatica	48. Violet, blue	31. Pansy, blue	56. Hyacinth, blue	61. Wistaria	54. Houstonia	27. Mallow flowers	$\underset{\text { Lion }}{\substack{\text { Litmus solu }}}$	24. Iris
Natural color . .	Blue	Violet-blue	Purple	$\begin{aligned} & \text { Purplish- } \\ & \text { blue } \end{aligned}$	Light blue	Light blue	Dark blue	Deep purple	Purple to violet
Mineral acids	Pale yellow-ish-red	Puredeep	Intenserich red	$\begin{aligned} & \text { Intense rieh } \\ & \text { red } \end{aligned}$	Purplish-	Light yellow- ish-red	$\underset{\text { Deep pur }}{\text { Ded! }} \text { p }$	$\left\lvert\, \begin{gathered} \mathrm{Y} \text { e } 11 \mathrm{low} \text { ish- } \\ \text { red } \end{gathered}\right.$	Pure deep red
Organie acids.	Pale yellow-ish-red	Pure red	Purplish-red	Violet-red	$\underset{\text { lish-red }}{\text { Pale purp. }}$	Light yellow-ish-red	$\begin{aligned} & \text { Deep pu } r p . ~ \\ & \text { lish-red } \end{aligned}$	Ye red owish-	Pure deep red
Alkalies . .	Green	Green	Green to brown-ish-green	Light brown-ish-green	$\begin{gathered} \text { Yellow ish- } \\ \text { green } \end{gathered}$	$\begin{aligned} & \text { Y' ellow ish- } \\ & \text { green } \end{aligned}$	Brownishgreen	Pure blue	Green, changing to yellowish-green
Potassium cyanide	Green	Green	Green	Green	$\underset{\text { Yeen }}{\text { Yellowish- }}$	$\begin{aligned} & \text { Yellow ish- } \\ & \text { green } \end{aligned}$	Brownishgreen	Pure blue	Green
Sodium phosphate	Pale green	Green	Green	Green	$\begin{aligned} & \text { Y' ellow ish- } \\ & \text { green } \end{aligned}$	$\begin{aligned} & \text { Y ellow ish- } \\ & \text { green } \end{aligned}$	Green	$\underset{\text { blue }}{\operatorname{purplish}}$	Green
Ferric chloride	Olive-green	Olive-green	Intense blue	$\begin{aligned} & \text { Purplissh- } \\ & \text { brown to } \\ & \text { brown } \end{aligned}$	Olive-green	Deepolivegreen	Brownishgreen	Purplish-red	Purplish-blue, changing to brown
Ferrous sulphate	Lightolivegreen	Bluish-green	Deep blue	Blue	$\underset{\substack{\text { Brownish } \\ \text { purple }}}{ }$	Olive-green	Reddish brown	Purplish-red	Pure blue
Salicylic acld.	Faint yellow-ish-red	Faint red	O.c.intensified	No effeet	Pale reddish	Slighty reddened	No change	$\underset{\text { Yed }}{\text { red }}$ (Faint red
Gallic acid	Faint yellow-ish-red	Slight red	O. e. intensified	O. e. intensified	No effect	No effeet	No effect	Yellow ish-	Faint red
Hydrogen peroxide	No effeet	Slight red	O.c. intensified	No effect	No effeet	No effect	No effect	$\underset{\text { red }}{\text { Yellow ish- }}$	No effeet
Sodium nitrite	No effect	Green	Pure green	No effeet	$\text { S } \underset{\text { greenish }}{\operatorname{ligh}} \mathrm{g}$	Light green	Pale purplish	No effect	Decolorized
Sodium nitrite, fol lowed with sulphurie acld	Pale yellow-ish-brown	Red, becoming decolorized	Red, then colorless	$\underset{\text { red }}{\text { Ye }}$	Pale reddish	Light yellow-ish-red	Golden yellow	$-\begin{gathered} \text { Ye ellow ish- } \\ \text { red } \end{gathered}$	Faint red, almost decolorized
Alum	Slightly yel-lowish-gr'n	Gobelin-blue	Sky-blue, light blue	Decolorized	No effect	No effect	No effeet	$\begin{aligned} & \text { Yell owish- } \\ & \text { red } \end{aligned}$	Pure blue, distinet
$\begin{gathered} \text { Ammonio-ferrie } \\ \text { alum } \end{gathered}$	Olive-green	Greenishbrown	Deep blue, rapidlychanging to bluish-gr'n	Reddish. brown	Olive-green	Olive-green	$\underset{\text { Grown }}{\text { Greenish }}$	$\begin{aligned} & \text { Y ellow ish- } \\ & \text { red } \end{aligned}$	Purplish, changing to brown
Iodine and potasslum iodide	No effect	No effect	Pale yellowish. red	No effect	No effect	No effect	No effeet	Blue	Decolorized
Tannin	No effeet	No effect	Reddened	No effect	No effect	No effeet	No effeet	Purplish-red	No effeet

IV. Examination of Purple Cell-sap Color Substances.

	25. Jack-in-thepulpif	40. Skunk cabbage	41. Skunk cabbaye	23a. Hepatica involucres	57. Lilac	51. Black Mexican corn	68. Elderberries
Natural color	Violet-red	Purplish-red	l'urplish-red	Purp	Purple	Purplish	Purplish
Mineral acjus	Pure deep re	Deepr red	Red	Faint salmon	Somewhat cloudy	Pure red	Purplish-red
Organic acids	lure de	Light purplish-	Light re	aint salmo	Somewhat eloudy	Pure re	Purplish-red
Alkalies	Green	Intense green	Green	Yellowish-green	Greenish, ehanging to yellowish-	Bluish-green	Pure green
Iotassium cyanide.	Green	Intense green	Green	Yellowish-green	Greenish, ehanging to yellowish-gr'n	Bluish-green	Pure green
5	Green	Green	Green	Pale yellowishgreen	Greenish, ehanging to yellowish-gr'n	Light bluish-green	Light green
Ferric chloride	Purplish-red. changing to brown	Dark purple	Purplish	Pale greeuish. brown	Deep brownish. green	Greenish-brown	Pale greenish brown
Ferrous sulphate	Violet	Dark purpl	Purplish	Very pale green-	Faint olive-green	Purp	Pale purplish
	rered	No effec	No	N	0 effe	Pinkis	O. e. slightly in tensifled
Gallic acid	rered	No effect	No effee	No effe	No effe	Slightly pink	O. c. slightly in-
H!	Pure red	No effeet	No effeet	No effe	No efle	Red	No effeet
Sodinm nitrite	No effec	No effee	Becoming eloudy	No effeet	No effeet	No effeet	Pale brown
Sodium nitrite, fol lowed by sulphuric acid	Pure deep red	Yellowish-red	Yellowish-red or orange	Pale yellowishbrown	Pale yellow	Yellowish-red	Purplish-red
Alum.		Purplish-red, fluorescent	Faint purplishred	No e	No effeet	Red, ehanging to violet	No effect
Ammonio-ferric alum	Purplish-brown	Greenish-brown	Purplish-gree	Greenish-brown	Deep brownishgreen	Yellowish-brown	Olive-green
Iodine solntion . .	No effec	No effect	No effec	No effe	No effeet	No effe	No effeet
Tannin.	Slightly red	No effect	No effect	No effeet	No effeet	Faint pink	No effeet

IV. Examination of Purple Cell-sap Color Substances-Continued.

	64. Blackberry	69. Concord grapes	8. Red cabbage	47. Turnip	71. Hydrangea	67a. Dulce	53. Wild geranium
Natural color Mincral acids Organic acids Alkalies Potassiam eyanide. Sorlium phosphate. Ferric ehloride . Ferrons sulphate. Salicylic acid Gallic acid. Hydrogen peroxide Sodium nitrite Sodium nitrite, followed by smphuric acid Alimm . Ammonlo-ferric alum. Iodine solntion . Tannin.	Reddish-purple	Bluish-jurple	Purplish-red	Purplish-red	Reddish-purple	Purplish-red	light purplish-red
	Purplish-red	O. c. intensified	Rose-red	Purplish-red	Yellowish-red	Purple, losing fluorescence	neep red
	Purplish-red	O. c. intensified	Light rose-red	Light purplish-red	Yellcwish-red	purple, losing fluoreseence	Faint red
	Brownish-purpte	$\left\|\begin{array}{c} \text { Puregrecu } \\ \text { ehanging to } \\ \text { olive-green } \end{array}\right\|$	lutense green	Light greel	Yellowish-green	Palc yellowishbrown Yeltowish-brown	Yellowish-green, changing to yel lowish-brown Greenish-yellow
	Brownish-gurple	1ale bluish-green	Intense green	Light green	Yellowish-green	Yellowish-brown	Greenish-yellow
	Slightly elanged	Violet	Bluish-green	light green	Yellowish-green	No effect	Greenish-yellow
	Purplish-brown, changing to brown	Greenish-brown	Rose-purple	Light greenishbrown	Olive-green	Purplish-brown	Deep olive-green
	brown purple	Purplish-brown	Purple	Light blue	Olive-green	No effeet	Blue
	No effect	No effeet	O. c. intensified	No effect	Slightly rediden'd	No effect	Red
	No effeet	No effee	O. c. intensitierd	Slightly pin	Slightly rerden'd	Slightly ,urp	No efleet
	No efleet	No efleet	No effleet	No effect	No effert	No effeet	No efleet
	Purple color in-	Purplish-brown	No eflect	No effect	Light greenish	No effeet	No effeet
	tensified Brownish-red	Brown	Yellowish-red	lake yellowish to brownish-red	Brownish-yellow	Falnt pirple, losing fllorescence	Inepred
	No effeet	No effect	Violet, purplish-	Faint violet	No eflect	No effeet	No effeet
	Deep purple	Olive-green	l'urplish-brown	lale brown	Olive-green	Purplish-brownish red	Bluish - brown green
	No effeet	No effect	No eflect	No eflect	No effeet	No effect	Red, beeomln colorless
	No effeet	Noeflert	No eflleet,	No cflect	No effeet	O.c.renderedbluish	No effeet

Examifation of Red Cell-sap Color Substances.

Examination of Red Cell-sap Color Substances-Continued.

	59. Strawberry	81. Solomon's	58, 77. Rhubarb	34. Radish	63. Beet	1. Baldwin apple	33. Pineapple
Natural color.	Yellowish-red to red	Ruby red	Pinkish to red	Bright red	Deep red	Red	Slightly reddened
Mineral acids	O.c. intensified	O. c. intensified	O. c. much intensified	Yellowish-red	No effect	O. c. intensified	Apparently no
Organic acids.	O. c. slightly intensified	O. c. intensified	O. c.intensified	O. c. much inten-	No effect	O. c. somewhat in-	effect Pale yellowish-
Alkalies	Brownish	Greenish-brown	Light green	Green	Green	tensified Greenish-yellow	green Pale yellowish
Potassium cyanide	Purplish	Greenish-brown	Light green	Slight blue	Green	Greenish-yellow	Apparently no
Sodinm phosphate	Pale purple	Greenish-brown	Almost decolor-	Slight blue, then	Greenish	Yellowish-green	Yellowish-green
Ferric chloride	Reddish-brown	Reddish-brown	Brownish	Red	Greenish-brown	Deep green	Pale jellowish
Ferrous sulphate .	Brownish-red	Light reddishbrown	Reddish	Red, slightly cloudy	Light greenishbrown	Brownish-green	No effect
Salicylic acid	No effect	No effiect	No effect	O.c. Intensified	No effect	No effect	Noeffeet
Gallic acid.	No effeet	No effect	No effect	O. c. strongly in-	No effect	No efliect	No effect
Hydrogen peroxide	No effect	No effect	No effeet	O. c. intensiffed	No effeet	No effect	No effect
Sodium nitrite	Slightly brown	No effeet	Decolorized	No effeet	No effleet	No effect	No effect
Sodium nitrite, followed with sulphuric aeid.	Pale yellowishbrown	Light reddishbrown	Pale yellow	Bright red	No effect	Brownish - red or brick-red	Light brown
Alum .	O. c. intensified	No effect	Purplish-red	Pale yellowish-	No effect	No effeet	No effeet
Ammonio-ferrle alum	Brown	Brownish-red	Pule brown	Deep yellow or yellowish-	Dark brown	Olive-green	Pale greenish brown
Iodine solution	No effect						
Tannin.	No effeet	No effect	No effect	Noeffect	No effect	No effeet	No effect

VI. Examination of Leaf Coloring Principles.

	S5. Rose	42 Shunk cabbage	30. Oak	6. Blackberry	21. Elder	18. Dock	50. Wahoo
Natural color.	Circelish-reyl	Purplish-red	Deep	Brownlsh-red	Greenish-red	Greenish-red	Greenish-red
Mineral ackis.	Rose colo	Yellowish-red	Orange-red	Pale brownishyellow	Light purplishred	Slightly reddish	Yellowish-red
Organic acids	fiose color	light yellowish-	Orange-red	Pale brownishyellow	Pale yellowlshred	No effect	Slightly reddened
Alkalles	Green, changing to greenish-	Green	Greenish-brown	O. e. intensified	Intense yellow-ish-green	Ycllowish-grcen	Greentsh
Potassium cyanid	Pale green	(ireen	Greenish-brown	O. c. intensifled	Intense green	Yellowish-green	Brownish-green
Evilum phosphate	131sh-	Green	P	htly	Intense green	Yellowish-green	Yellowish-green
Ferric chloride	ive-gree	Dark brownishgreen	Bluish, changing to purplish	Olive-grecu, changing to brown	Deep green	Dark green	Olive-green
Ferrous sulphate	ep	Dark brownishgreen	Indigo bhe	Pale olive-green	Deep green	Dark green	Faint orange green
Salicylic acid.	le re	No effeet	Slightly orange-	No effee	$\underset{\substack{\text { Faint } \\ \text { red }}}{\text { yellowish- }}$	No effect	No effect
Gallie acid	Pale red	No effee	Slightly orangered	No effect	Faint yellowlsh-	No cffect	No effec
Hyirogen Yeroxide	effee	No effect	Slightly orange-	No effect	Faint yellowlsh-	No effect	No effeet
Sodium nitrite	No effeet	No effee	No effee	No effee	Slightly green	No effect	Slightly green
Sodinm nitrite, followed with sulphurie acid	Yellowish-brown	Brownish-yellow	Reddish-brown	No effect	Reddish, changing to brown	D e ep brownishred	Ycllowish-red
Alum	Reddish-brown	No effeet	Purplish or violet colored	No effect	Pale ycllowishbrown	Pale yellowish. green	No effe
Ammonio-ferrie alum	ive-gre	Purplish-green	Bluish-brow	Brownish-green	Decp green	Dark green	Olive-green
Iodine solution.	No effect	No effect	Green, changing to purplish-	No elfeet	No effect	No effect	No effect
Tannin.	Faint purplishred	No etreet	No effect	No effect	No cffect	No efleet	No effect

VI. Examination of Leaf Coloring Principles-Continued.

	44. Sweet cicely	74. Maple	76. Oak	67. Dogwood	72. Indian cucumber	62. Becch.
Natural color	Greenish-red	Dark red	Dark red	Dark red	Reddish	Greenish to brown-ish-yellow
Mineral acids	Faint yellowishred	Yellowish-red	Yellowish-red	Yellowish-red	Deep purplish-red	Partly decolorized
Organic acids	Faint yellowishred	Slightly yellowish-	$\underset{\text { red }}{\text { Slightly yellowish. }}$	Yellowish-red	Deep purplish-red	Partly decolorized
Alkalies	Yellowish	Olive-green, with ammonia, reddish brown	Reddish-brown	Brown	Green	Brown
Potassium cyanide	Yellowish	Deep brownish-red	Purplish-red	Brown	Green	Very light brown
Sodium phosphate	Yellowish	Light olive-green	Grcenish-brown	Light brown	Light grcen	Faint brown
Ferric chloride.	Olive-green	Deep blue precipitate	Blue, changing rapidly to olivegreen	Deep blue, changing to olive-green	Reddish-brown	Greenisl-brown
Ferrons sulphate	Olive-green	Deep blue solution	Blue	Deep blue	Reddish-brown	Palegreenish brown
Salicylic acid.	No effect	Slightly yellowishred	No effect	Yellowish-red	Purplish-red	Partly decolorized
Gallic acid	No effect	Slight effect	No effect	Yellowish-red	Pur ${ }^{\text {llish-red }}$	Irartly decolorized
Hydrogen peroxide .	No effect	No effect	No effeet	No effect	Purplish-red	l'artly decolorized
Sodinm nitrite	Brownish	No effec	No effect	Brownish-yellow	Faint brown	No effect
Sodium nitrite, followed with sulphuric acid	Yellowish-brown	Yellowish-red	Yellowish-red	Yellowish-red, changjng to yellowish. brown	Faint yellowish-	Light brown
Alum .	Light greenishyellow	No effect	No eflect	Purplish-red	Purplish-red	Partly decolorized
Ammonio-ferric alum. .	Olive-green	Deep blue	Blue, changing to olive-green	Deep blne, changing to olive-green	1'urplish-brown	Greenish-brown
Iodine solution .	No effect	No effect	No effect	No effeet	No effect	No effect
Tannin	No effect	No effect	No effeet	No effect	Purplish-red	No effect

[^0]: ${ }^{1}$ In the examination of plant colors the following reagents were found useful: Sulphuric acid, 10 per cent.; hydrochloric acid, 10 per cent.; nitric acid, 10 per cent.; citric acid, 5 per cent.; oxalic acid, 5 per cent.; sodium hydrate, 10 per cent.; ammonium hydrate, 10 per cent.; potassium cyanide, 1 per cent.; sodium phosphate, 5 per cent.; ferric chloride, 3 per cent.; ferrous sulphate, 2.5 per cent.; hydrogen peroxide, 3 per cent.; salicylic acid, salurated solution, gallic acld, 1 per cent.; sodium nitrite, I per cent.; sodium nitrite followed by supphuric

[^1]: acid; potash alum, io per cent.; ammonio-ferric alum, 5 per cent.; iodine solution containing .I per cent. iodine and 0.5 per cent. potassium iodide; tannin, 3 per cent.

[^2]: \dagger O．e．，original color of solution．

